Erk5 controls Slug expression and keratinocyte activation during wound healing.
نویسندگان
چکیده
Reepithelialization during cutaneous wound healing involves numerous signals that result in basal keratinocyte activation, spreading, and migration, all linked to a loosening of cell-cell adhesion structures. The transcription factor Slug is required for this process, and EGF treatment of human keratinocytes induced activating phosphorylation of Erk5 that coincides with slug transcription. Accordingly, ectopic activation of Erk5 led to increased Slug mRNA levels and faster wound healing, whereas keratinocyte migration was totally blocked by Erk5 pathway inhibition. Expression of a shRNA specific for Erk5 strongly diminished Erk5 levels in keratinocytes and significantly decreased their motility response to EGF, along with induction of Slug expression. These Erk5-deprived keratinocytes showed an altered, more compact morphology, along with disruption of desmosome organization. Accordingly, they displayed an altered ability to form cell aggregates. These results implicate a novel EGFR/Erk5/Slug pathway in the control of cytoskeleton organization and cell motility in keratinocytes treated with EGF.
منابع مشابه
Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β-Slug signaling.
Vimentin has been shown to be involved in wound healing, but its functional contribution to this process is poorly understood. Here we describe a previously unrecognized function of vimentin in coordinating fibroblast proliferation and keratinocyte differentiation during wound healing. Loss of vimentin led to a severe deficiency in fibroblast growth, which in turn inhibited the activation of tw...
متن کاملERK5 silencing inhibits invasion of human osteosarcoma cell via modulating the Slug/MMP-9 pathway.
OBJECTIVE ERK5 is over expressed in a many of human cancers and this overexpression has been associated with metastasis and invasion. Furthermore, ERK5 silencing inhibits aggressive phenotypes of cancer cells. However, mechanisms by which ERK5 regulates tumour progression or metastasis have not been elucidated. In this study, using human osteosarcoma cell lines U2OS as a model, we explored the ...
متن کاملSlug is upregulated during wound healing and regulates cellular phenotypes in corneal epithelial cells.
PURPOSE The involvement of the epithelial mesenchymal transition (EMT) in the process of corneal wound healing remains largely unclear. The purpose of the present study was to gain insight into Slug expression and corneal wound healing. METHODS Slug expression during wound healing in the murine cornea was evaluated using fluorescence staining in vivo. Slug or Snail was stably introduced into ...
متن کاملBone morphogenetic protein signalling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration
Bone morphogenetic protein (BMP) signaling plays a key role in the control of skin development and postnatal remodeling by regulating keratinocyte proliferation, differentiation, and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ...
متن کاملO-8: Clinical Application and Evaluation of Autologous Keratinocyte and Fibroblast Cells Culture on Horse Open Wound Healing
KFGS (Keratinocyte fibrin glue suspension) and FKFGS (Fibroblast keratinocyte fibrin glue suspension) methods were performed in this study. Materials and Methods: Four healthy adult horses were used in this study (350 ± 117). Fibroblast cells have been separated by explant culture method from neck, keratinocyte cells have been separated by enzyme digestion from lib skin samples and Fibrinogen h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2008